

SecurityXploded

Reversing and

Malware Analysis

Training Articles

[2012]
A Free Training Project From SecurityXploded
(http://securityxploded.com/security-training.php)

SecurityXploded Research Group
11/24/2012

We Recommend:

 http://www.securityphresh.com

Course Q&A:

Join our mailing list:

 http://groups.google.com/group/securityxploded

http://groups.google.com/group/securi

tyxploded

http://groups.google.com/group/securi
tyxploded

http://www.securityphresh.com/
http://groups.google.com/group/securityxploded

Reversing and Malware Analysis Training [2012] Page 2

Contents

DISCLAIMER, ACKNOWLEDGMENT AND CREDITS...5

DISCLAIMER ..5

ACKNOWLEDGMENT ..5

CREDITS ..5

ASSEMBLY PROGRAMMING: A BEGINNERS GUIDE ..6

INTRODUCTION..6

REQUIRED TOOLS ..6

INSTALLATION ...6
CONFIGURING WINASM ..7

PROGRAMMING IN ASM USING MASM & WINASM ...7

MY FIRST ASM PROGRAM ..8

Block 1 ...9
Block 2 ...9

Block 3 ...9

Block 4 .. 10
Block 5 .. 10

Build and Run the Program .. 10

REFERENCES ... 11

AUTOMATION OF REVERSING THROUGH SCRIPTIN G ... 12

INTRODUCTION... 12

OLLYDBG - PLAYING WITH OLLYSCRIPT .. 13

Problem Statement: ... 13

Solution: ... 13
IMMUNITY DEBUGGER .. 15

Problem statement: ... 15

Solution Script: .. 15
PYDBG ... 16

Problem Statement: ... 16

Solution: ... 16

WINDBG .. 18
Problem Statement: ... 18

Solution: ... 18

CONCLUSION.. 19
REFERENCES ... 19

API CALL TRACING - PEFILE, PYDBG AND IDAPYTHON .. 20

INTRODUCTION... 20

API CALL TRACING ... 20
API CALLS LOGGING WITH PEFILE & PYDBG ... 21

Unpacking UPX using API Call Tracing .. 25

Binary Behaviour Profiling .. 26
Finding Interesting Functions ... 26

EXTENDING API TRACING WITH IDAPYTHON .. 27

CONCLUSION.. 28

REFERENCES ... 28

Reversing and Malware Analysis Training [2012] Page 3

MANUAL UNPACKING OF UPX USING OLLYDBG .. 29

INTRODUCTION... 29
PACKING EXE USING UPX .. 29

UPX UNPACKING PROCESS ... 30

MANUAL UNPACKING OF UPX.. 30

FIXING IMPORT TABLE .. 31
VIDEO DEMONSTRATION .. 33

REFERENCES ... 33

MALWARE MEMORY FORENSICS... 34

INTRODUCTION... 34

WHY MEMORY FORENSICS? ... 34

VOLATILITY - A QUICK OVERVIEW ... 35

Volatility Syntax & Usage.. 35
DEMONSTRATION - MEMORY FORENSICS .. 35

Demo Scenario .. 35

Preparation Steps ... 35
DEMONSTRATION - MEMORY ANALYSIS .. 35

Step 1: Start with what you know ... 35

Step 2: Info about 208.91.197.54 .. 36

Step 3: Who is Pid 1748?... 36
Step 4: Process handles of explorer.exe ... 37

Step 5: API Hooks in explorer.exe .. 37

Step 6: Exploring the Hooks .. 37

Step 7: Embedded EXE in explorer.exe ... 38
Step 8: Dumping the embedded EXE... 38

Step 9: VirusTotal Submission .. 39

Step 10: Can we get more info? ... 39
Step 11: Printing the Registry Key ... 40

Step 12: Finding the Malicious EXE on Infected Machine ... 40

CONCLUSION.. 41

REFERENCES ... 41

DLL INJECTION AND HOOKING ... 42

INTRODUCTION... 42

DLL INJECTION ... 42
DLL INJECTION USING CREATEREMOTETHREAD ... 43

HOOKING ... 47

INLINE HOOKING .. 48

CONCLUSION.. 52
REFERENCES ... 52

IN-MEMORY EXECUTION OF AN EXECUTABLE .. 53

INTRODUCTION... 53
TECHNICAL INTRODUCTION ... 53

IN-MEMORY EXECUTION .. 54

Address space ... 55

Sections mapped into Address Space.. 56
Imported API addresses... 56

Reversing and Malware Analysis Training [2012] Page 4

MEMORY EXECUTION – PROTOTYPE CODE .. 56

CONCLUSION.. 60
REFERENCES ... 60

Reversing and Malware Analysis Training [2012] Page 5

Disclaimer, Acknowledgment and Credits

Disclaimer

The Content, Demonstration, Source Code and Programs presented here is "AS IS" without
any warranty or conditions of any kind. Also the views/ideas/knowledge expressed here are
solely of the trainer’s only and nothing to do with the company or the organization in which

the trainer is currently working.

However in no circumstances neither the trainer nor SecurityXploded is responsible for any
damage or loss caused due to use or misuse of the information presented here.

Acknowledgment

Special thanks to null & Garage4Hackers community for their extended support and
cooperation.

Thanks to all the trainers who have devoted their precious time and countless hours to make it
happen.

Thanks to Keon and Thoughtworks for providing beautiful venue.

Credits

Following people served as the backbone of this project, without their efforts it was not
possible to make it happen.

Monnappa : Infosec investigator, Cisco Inc.

Swapnil Pathak : Security Researcher, McAfee Inc.
Harsimran Walia : Security Researcher, McAfee Inc.
Nagareshwar Talekar : Security Researcher and Founder of SecurityXploded

Amit Malik : Security Researcher, McAfee Inc.

The trainers would also like to thank their employer and seniors for allowing them to deliver

these lectures.

Reversing and Malware Analysis Training [2012] Page 6

Assembly Programming: A Beginners Guide

Author: Amit Malik

Introduction

This article is specially designed to help beginners to understand and develop their first

Assembly Program from scratch. Through step by step instructions it will help you to use

tools, setup the environment and then build sample'Hello World' program in Assembly
language with detailed explaination.

This article is the part of our free "Reverse Engineering & Malware Analysis

Course" [Reference 4]. It is written as pre-learning guide for our session on 'Part 4 -

Assembly Programming Basics' where in we are going to cover Assembly Programming
from the reverse engineering perspective.

Here we will be demonstrating Assembly programming using MASM as it is the Microsoft
assembler and provide much flexibility when it comes to development on Windows

environment over various other assemblers like NASM etc.

Required Tools

 MASM [Reference 2] - MASM is a Microsoft assembler.

 WinAsm [Reference 3] - WinAsm is IDE. It provides a nice interface for coding and

moreover you don't have to type different-2 command for assembler and linker to

compile a binary, with one click it will generate EXE for you.

Installation

 MASM - By default MASM tries to install itself in windows drive mostly c drive but

you can install it in any Drive/directory. We need the full path of MASM installation

to configure WinAsm so note down the drive/directory where you installed MASM.

Reversing and Malware Analysis Training [2012] Page 7

 WinAsm - Download and extract the WinAsm package. WinAsm comes with all files

you require so you don't have to install it. Just copy the folder to "c:\program files\"

and make a shortcut to desktop so that you can access directly from desktop.

Configuring WinAsm

Launch WinAsm by double clicking on the shortcut created on the desktop. In order to
integrate it with MASM we need to setup the MASM path in WinAsm configurations. Here
are the steps,

1. Click on the tools tab

2. In tools click on options

3. In options click on file & path tab

4. Change the all entries with path to MASM installation folder
5. Click on Ok.

After this you should be able to write programs in WinAsm.

Programming in ASM using MASM & WinAsm

Launch the WinAsm window, click on the "file" tab. Then click on the new projects and it

will show you couple of options as shown below.

Reversing and Malware Analysis Training [2012] Page 8

 Console Application - For creating console (command-line) applications

 Standard EXE - For creating GUI based applications

Here we willl use Standard EXE because we want to make a GUI Application. Now you
will see the editor window in which you can write your programs.

My First ASM Program

Here is a typical assembly program structure,

1. Architecture - Define the architecture because assembly is Hardware (processor)

dependent language so you have to tell to assembler the architecture for which you are

writing your program.

2. Data Section - All your initialized and uninitialized variables reside in data section.

3. Code Section - Entire code of your program reside in this section.

Now we will write a program that will display the message box saying "Hello World!"

;------------Block 1----------

.386

.model flat,stdcall

option casemap:none

;------------Block 2----------

include windows.inc

include user32.inc

includelib user32.lib

include kernel32.inc

includelib kernel32.lib

;------------block 3----------

.data

szCaption db "Hello",0

szMsg db "Hello World!",0

;------------Block 4----------

.data?

retvalue dd ?

;------------Block 5----------

.code

start:

invoke MessageBox,NULL,addr szMsg,addr szCaption,MB_OK

mov retvalue,eax

xor eax,eax

invoke ExitProcess,eax

end start

Reversing and Malware Analysis Training [2012] Page 9

I divided the above code in 5 blocks. Below I will explain the purpose and functionality of
each block.

Block 1

1).386

2).model flat,stdcall

3)option casemap:none

#1 - This line defines the architecture for which we want to make this program. (.386)
represent Intel architecture
#2 - This line defines the model and the calling convention that we want to use for this

program. We will explain it in detail in our "Assembly Basics" session.
#3 - function names, variable names etc. are case sensitive

All these three lines are required in each program.

Block 2

1)include windows.inc

2)include user32.inc

3)includelib user32.lib

4)include kernel32.inc

5)includelib kernel32.lib

include and includelib are two keywords. Include is used with .inc files while includelib is

used with .lib files.

.inc files are header files. for eg: windows.inc is windows.h, you can convert any .h file into

.inc file using H2INC utility that comes with MASM.

.lib files are required by linker to link the used functions with the system dlls. In our program
we used two .lib files (user32.lib & kernel32.lib). For each .lib file we have to include its
corresponding .inc file.

Block 3

1).data

2)szCaption db "Hello",0

3)szMsg db "Hello World!",0

.data is the section for initialized variables. Every initialized variable should be initialized in
this section. In our code we have two variables of char type <string>.

Syntax: <variable_name> <type> <value>

For eg: in #2 szCaption is the variable name, db is the type means char type, "Hello", 0 is the
value.

Here important point to note is that every char or string value should be terminated with zero
(0).

Reversing and Malware Analysis Training [2012] Page 10

Block 4

1).data?

2)retvalue dd ?

.data? is the section for uninitialized variables. Every uninitialized variable should be

declared in this section.

Block 5

1).code

2)start:

3)invoke MessageBox,NULL,addr szMsg,addr szCaption,MB_OK

4)mov retvalue,eax

5)xor eax,eax

6)invoke ExitProcess,eax

7)end start

.code represents the start of code. All your code should be written in this section

#2 start: It is a label and it is like main function. You can name it anything but you have to
use the same name in #7 otherwise linker will generate an error.

Fore.g.:

main:
...
end main

#3 invoke - is the keyword, its operation is similar to "call". But in call you have to manually

push parameters on the stack while invoke will do everything for you.

Syntax: function_name parameter1, parameter2, parameter3, etc.

In our code MessageBox is the API from user32.dll and it requires 4 arguments.

Here important point to note is that we used "addr" with some of our variables. addr will give

address of the variable instead of its value, it is like pointer in c.

#7 end start - it says the end of the code and file.

Build and Run the Program

Now paste the above code in WinAsm and click on "make" tab, in "make" click on
"Assemble". After that click on "link" which will be the executable for this program.

Finally run the EXE file by double clicking on it, it should display "Hello World!".

This is a basic program to help you to learn Assembly Language in easier way. For more
advanced details refer/attend our FREE Reversing/Malware Analysis course [Reference 4]

Reversing and Malware Analysis Training [2012] Page 11

References

1. Icezelion's Win32 Assembly Tutorials

2. MASM - http://www.masm32.com/

3. WinASM - http://www.winasm.net/
4. Reverse Engineering & Malware Analysis Course

http://win32assembly.online.fr/tutorials.html
http://www.masm32.com/
http://www.winasm.net/
http://securityxploded.com/security-training.php

Reversing and Malware Analysis Training [2012] Page 12

Automation of Reversing Through Scripting
Author: Amit Malik

Introduction

This article teaches you how to become smart reverser by automating your reverse

engineering tasks through Scripting.

It is the part of our free "Reverse Engineering & Malware Analysis Course" [Reference

1]. It is primarily written to act as additional learning material for our session on 'Part 5 -
Reverse Engineering Tools' where in we are going to demonstrate important reversing tools.

You can visit our training page here [Reference 1] and all the presentations of previous
sessions here [Reference 2]

Reverse engineering is a sophisticated task especially when we analyse large applications or
packed files like malware or normal applications for vulnerabilities.

Some of the common tasks include

 Tracking memory allocation

 Tracking specific API calls

 Unpacking a family of malwares
 Intelligent decision making based on some specific events

These are just some simple examples where automation will help in a great way. For
example, lets say that we want to monitorHeapAlloc calls in an application and application

may call HeapAlloc for hundreds of times but we want to log the call for some specific
values like if allocation request is greater than 1024 bytes etc.

Reversing and Malware Analysis Training [2012] Page 13

A simple script will give us all the information virtually on the spot while in manual task we
have to manually create breakpoints on HeapAlloc and have to check if the allocation size is

greater than 1024 bytes or not which eventually increase the analysis time for such a simple
task.

In this article, I will show you how to automate some of these common tasks through

Scripting for main reversing debuggers i.e Ollydbg, Immunity Debugger, Pydbg & Windbg

with practical code samples.

Ollydbg - Playing with OllyScript

Ollydbg [Reference 3] is one of the best ring 3 (user- land) debugger. It has a very nice gui

interface. It is one of the most popular debugger on the planet and has very mature
community support. Ollydbg is my all time favourite debugger :)

But ollydbg doesn't support scripting natively instead ollydbg support plugins. So people
written scripting plugins for ollydbg, the one that i will use in this article is Ollyscript by

ShaG.

You can download Ollyscript from here [Reference 4].

Ollyscript comes with a nice help file. It has similar syntax like assembly programming and

very easy to understand. It supports almost all functionalities like dumping memory, decision
making etc.

But when you compare it with other debuggers scripting environment then it will seems to be
a rigid type of scripting environment, I will discuss more about it later in this article.

So let's understand Ollydbg scripting environment i.e Ollyscript with the help of a simple

example.

Problem Statement:

Let say we are analysing an application for a simple bug and we want to identify the function
that is actually causing the problem. But the function is deep inside the application and
manually it will take hours of analysis time.

So here we want to track the execution flow after a specific point up to the function that is

causing the problem, more precisely I want to log the return address of each function.

Solution:

The above problem can be solved by multiple methods but to demonstrate it in a very simple
way I will use the following steps,

1. From current EIP, search for calls and create breakpoint on that call

2. Step into the call

Reversing and Malware Analysis Training [2012] Page 14

3. Log the value at ESP (i.e return address) and search for calls at return address and

4. Breakpoint on the call

5. Repeat step 1, 2, 3 inside the call
6. Run

Below is the tiny script to accomplish this task. Please note that the script is just to
demonstrate the concept, it may fail when call used after decision instructions.

/*

Author: Amit Malik

http://www.securityxploded.com

*/

EOB breakprocess

var return

var infunction

var x

var y

mov infunction,EIP

mov return,EIP

start:

findop return,#E8#

mov x,$RESULT

findop infunction,#E8#

mov y,$RESULT

cmp x,0

ja breaksetx

backx:

cmp y,0

ja breaksety

backy:

run

breakprocess:

sti

mov return,[esp]

msg return

sti

mov infunction,EIP

jmp start

breaksetx:

bp x

jmp backx

Reversing and Malware Analysis Training [2012] Page 15

breaksety:

bp y

jmp backy

Please refer to the Ollyscript help file [Reference 4] for more details. Here I will explain only
important keywords and terms.

The script start with EOB (Execute over breakpoint), as name states it will execute the code
inside the label that is specified with EOB when a breakpoint hit. In this code it will execute

the breakprocess label code.

var - declares a variable.

mov - is similar to assembly

findop - search for opcode from the specified address & stores the results

into a $RESULT variable

run - is similar to F9 in ollydbg

sti - step into - similar to F7 in ollydbg

msg - will show a messagebox - (log should be used but I used msg just for

visual pleasure :))

As you can see that scripting is similar to assembly language. Most of the time people use

ollyscripting for unpacking malwares. I have never seen anyone using it for vulnerability
analysis. It is not very much flexible and also limited in its functionality. But it can be used

for some stuff that we want to automate through ollydbg.

Immunity Debugger

Immunity debugger [Reference 3] is a pure python debugger with similar GUI interface as
Ollydbg. It is developed by Immunity Inc. and according to immunity it is the only debugger

designed specifically for vulnerability research.

It has some very powerful pycommands like heap, lookasidelist etc. one of the major

advantage of this debugger is that it provides plethora of APIs for various reversing tasks and
supports python which makes it one of the best debugger for reversing.

In the reference section [Reference 6] you can find some good tutorials and projects based on
Immunity debuggers and also it comes with a nice help file so don't forget to check that as

well.

Problem statement:

We want to search all "jmp esp" instruction addresses.

Solution Script:

You can use the below script directly on Immunity debugger python shell

Reversing and Malware Analysis Training [2012] Page 16

data = "jmp esp"

asm = imm.assemble(data) # imm is object of immlib class

results = imm.search(asm)

for addr in results:

 print "%s %0.8x" % (data,addr)

The above 5 lines of code will give you all the "jmp esp" addresses. This is the beauty of
scripting :)

Pydbg

Pydbg [Reference 3] is also a pure python based debugger. Pydbg is my favourite debugger,
I use it in various automation tasks and it is extremely flexible and powerful.

Problem Statement:

We want to track VirtualAlloc API whenever VirtualAlloc is called, our script should
display its arguments and the returned pointer.

VirtualAlloc:

LPVOID WINAPI VirtualAlloc(

__in_opt LPVOID lpAddress,

__in SIZE_T dwSize,

__in DWORD flAllocationType,

__in DWORD flProtect

);

Solution:

1. Put breakpoint on VirtualAlloc

2. Extract parameters from stack

3. Extract return address from stack and put breakpoint on that

4. Get the value from EAX register.

Author: Amit Malik

http://www.securityxploded.com

import sys

import pefile

import struct

from pydbg import *

from pydbg.defines import *

def ret_addr_handler(dbg):

 lpAddress = dbg.context.Eax # Get value returned by VirtualAlloc

 print " Returned Pointer: ",hex(int(lpAddress))

Reversing and Malware Analysis Training [2012] Page 17

 return DBG_CONTINUE

def virtual_handler(dbg):

 print "****************"

 pdwSize = dbg.context.Esp + 8 # 2nd argument to VirtualAlloc

 rdwSize = dbg.read_process_memory(pdwSize,4)

 dwSize = struct.unpack("L",rdwSize)[0]

 dwSize = int(dwSize)

 print "Allocation Size: ",hex(dwSize)

 pflAllocationType = dbg.context.Esp + 12 # 3rd argument to

VirtualAlloc

 rflAllocationType = dbg.read_process_memory(pflAllocationType,4)

 flAllocationType = struct.unpack("L",rflAllocationType)[0]

 flAllocationType = int(flAllocationType)

 print "Allocation Type: ",hex(flAllocationType)

 pflProtect = dbg.context.Esp + 16 # 4th Argument to

VirtualAlloc

 rflProtect = dbg.read_process_memory(pflProtect,4)

 flProtect = struct.unpack("L",rflProtect)[0]

 flProtect = int(flProtect)

 print "Protection Type: ",hex(flProtect)

 pret_addr = dbg.context.Esp # Get return

Address

 rret_addr = dbg.read_process_memory(pret_addr,4)

 ret_addr = struct.unpack("L",rret_addr)[0]

 ret_addr = int(ret_addr)

 dbg.bp_set(ret_addr,description="ret_addr breakpoint",restore =

True,handler = ret_addr_handler)

 return DBG_CONTINUE

def entry_handler(dbg):

 virtual_addr = dbg.func_resolve("kernel32.dll","VirtualAlloc") #

Get VirtualAlloc address

 if virtual_addr:

 dbg.bp_set(virtual_addr,description="Virtualalloc

breakpoint",restore = True,handler = virtual_handler)

 return DBG_CONTINUE

def main():

 file = sys.argv[1]

 pe = pefile.PE(file)

 # get entry point

Reversing and Malware Analysis Training [2012] Page 18

 entry_addr = pe.OPTIONAL_HEADER.AddressOfEntryPoint +

pe.OPTIONAL_HEADER.ImageBase

 dbg = pydbg() # get pydbg object

 dbg.load(file)

 dbg.bp_set(entry_addr,description="Entry point breakpoint",restore

= True,handler = entry_handler)

 dbg.run()

if __name__ == '__main__':

 main()

Notice that in this script first i am setting breakpoint on entry point and then on VirtualAlloc

not directly to VirtualAlloc because pydbg does not support deferred breakpoints. I am also
ignoring 1st argument to VirtualAlloc i.e lpAddress, see VirtualAlloc specification in

problem statement.

This script uses two modules PEFile and Pydbg, PEFile is used to get the entry point.

Windbg

Windbg [Reference 3] is the official Microsoft debugger. It is the most powerful debugger
available for reversing on windows platform (mainly Kernel side of it) and it also supports

symbols.

Windbg provides its own scripting language which is similar to C language, it also comes

with a great help file. I highly recommend reading help file before we start with Windbg.

Problem Statement:

We want to track malloc, whenever malloc is called, our script should display requested size

for allocation and returned pointer.

Solution:

On the same lines as previous example.

1. Breakpoint on malloc

2. Extract parameter from stack

3. Extract return address from stack and put breakpoint on it
4. Get value from EAX register

bp msvcrt!malloc ".printf \"Size: %x\n\",poi(esp+4);gu;.printf \"Returned

Pointer: %x\n\",eax;g"

Reversing and Malware Analysis Training [2012] Page 19

When we use multiple commands in a single line then we have to separate them using
semicolon (;)

bp - sets breakpoint

msvcrt!malloc - this is DLL!Method (here DLL name & function name are

separated by !)

These are known as conditional breakpoints and in conditional breakpoints we want to
perform something when breakpoint hit. In our case we want extract the size of allocation
from stack.

So simple syntax is:

bp address or dll!method or dll!method+offset "block that should be

executed when breakpoint hits"

poi - is similar to pointer in c

gu - go up - execute until return

g - go or execute

For more interesting commands please check out the Windbg help file.

Conclusion

This article is an additional learning material to our next session on 'Part 5 - Reverse
Engineering Tools' - part of our FREE Reversing/Malware Analysis course [Reference 1]

References

1. Reverse Engineering & Malware Analysis Course

2. Presentations of Reverse Engineering Course

3. Debuggers - OllyDbg, Immunity Debugger, PyDbg, Windbg

4. OllyScript - Scripting Plugin for OllyDbg

5. WinDbg Introduction

6. Starting to write Immunity Debugger PyCommands : My Cheatsheet
7. mona.py – the manual

http://securityxploded.com/security-training.php
http://securityxploded.com/security-presentations.php
http://securityxploded.com/malware-analysis-training-reference.php
http://securityxploded.com/download/OllyScript.zip
http://dvlabs.tippingpoint.com/blog/2008/09/25/mindshare-windbg-introduction%20target=
http://www.corelan.be/index.php/2010/01/26/starting-to-write-immunity-debugger-pycommands-my-cheatsheet/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/

Reversing and Malware Analysis Training [2012] Page 20

API Call Tracing - PEfile, PyDbg and IDAPython
Author: Amit Malik

Introduction

In this article, we will learn how to perfrom API Call Tracing of Binary file through PyDbg

and IDAPython.

This is the part of our free "Reverse Engineering & Malware Analysis Course".

You can visit our training page here and all the presentations of previous sessions here

In my previous article, "Automation of Reversing" I have discussed on using PyDbg
scripting environment. Here also we are going to use PyDbg extensively to trace or log the

API calls from a binary file.

API Call Tracing

API Call Tracing is the powerful technique. It can provide a high level functional overview
about an executable file. In some cases we only need API call logs to understand the

application behaviour. I often use it to automate my Malware analysis tasks.

In this article I will discuss some of my techniques.

Some of the tasks that we can accelerate using this technique are,

http://securityxploded.com/security-training.php
http://securityxploded.com/security-training.php
http://securityxploded.com/security-presentations.php
http://securityxploded.com/automation-reversing-scripting.php

Reversing and Malware Analysis Training [2012] Page 21

1. Unpacking of Packed Binary File

2. Binary Behaviour profiling
3. Finding out the interesting functions in the binary

Here, I will use PyDbg script to log the API calls and finally IDAPython script to automate
some of manual analysis.

API Calls Logging with PEfile & PyDbg

Based on the above tasks we need following information from our script.

1. Return Address - From where the API is called?
2. API Name - Which API is called?

It means we have to breakpoint on every API call and for that we need API name or API
address. If we have API name then we can resolve its address and can breakpoint on that, In

case of address we can directly breakpoint on that. But the question is how do we get the API
names?

This can be solved by using PEfile. So we will first enumerate the executable import table
and then we will resolve the addresses and put breakpoints using PyDbg.

But this approach has following limitations,

1. It will fail in the case of a DLL that will be loaded by binary at run time using

LoadLibrary()

2. If binary is packed then unpacking stub will create the import table at run time which
we can't control.

Before solving this problem let's talk about the ways used by unpacker stub or custom loaders
to build an import table at run time.

Generally they use LoadLibrary API to load the dll and GetProcAddress to get the address

of the API. LoadLibrary and GetProcAddress APIs are exported by kernel32.dll which is
loaded into every Windows process by default.

So if we set breakpoint on GetProcAddress then we can get API Name from stack. Then we

can set breakpoint on the address of respective API call. Here I am ignoring the call for
GetProcAddress with API Ordinal because it is not a common approach.

But there is also another method for building import table at run time which is typically used
by malicious softwares.

In assembly it will look like this,

push dword ptr fs:[30h] ; PEB

pop eax

Reversing and Malware Analysis Training [2012] Page 22

mov eax,[eax+0ch] ; LDR

mov ecx,[eax+0ch] ; InLoadOrderModuleList

mov edx,[ecx]

push edx

mov eax,[ecx+30h]

Here is the screenshot of PEB structure of typical Windows Process (dumped in Windbg)

In this method, custom loader first locate the kernel32.dll base address (2nd - after ntdll.dll
in InLoadOrderModuleList link list] and then walk through the kernel32.dll export table to

find out the LoadLibrary() address. After that custom loader will load all other dependent dlls
and resolve the API Addresses using the following methods,

1. GetProcAddress - similar to previous method
2. Walking through the export table of each loaded dll.

Here to capture the activity of #2 we have to use global hooks or SSDT hooks which is
beyond the scope of this article. We can also hook every exported API of all loaded DLLs but

that can be very expensive.

Here are the step by step instructions for API Call Tracing,

1. Walk through the binary import table and put breakpoint on every API

2. Also put Breakpoint on GetProcAddress function.

3. If Breakpoint hits and it is not GetProcAddress then extract 'Return Address' from

stack and log it with API name

4. If GetProcAddress hits then fetch API name and return address from stack and put

breakpoint on 'Return Address'

5. If 'Return Address' breakpoint hits then get value from EAX register and set
breakpoint on it.

Based on this approach, we will write PyDbg script and log every API with 'Return

Address'

'''

Author: Amit Malik

Reversing and Malware Analysis Training [2012] Page 23

http://www.securityxploded.com

'''

import sys,struct

import pefile

from pydbg import *

from pydbg.defines import *

def log(str):

 global fpp

 print str

 fpp.write(str)

 fpp.write("\n")

 return

def addr_handler(dbg):

 global func_name

 ret_addr = dbg.context.Eax

 if ret_addr:

 dict[ret_addr] = func_name

 dbg.bp_set(ret_addr,handler=generic)

 return DBG_CONTINUE

def generic(dbg):

 global func_name

 eip = dbg.context.Eip

 esp = dbg.context.Esp

 paddr = dbg.read_process_memory(esp,4)

 addr = struct.unpack("L",paddr)[0]

 addr = int(addr)

 if addr < 70000000:

 log("RETURN ADDRESS: 0x%.8x\tCALL: %s" % (addr,dict[eip]))

 if dict[eip] == "KERNEL32!GetProcAddress" or dict[eip] ==

"GetProcAddress":

 try:

 esp = dbg.context.Esp

 addr = esp + 0x8

 size = 50

 pstring = dbg.read_process_memory(addr,4)

 pstring = struct.unpack("L",pstring)[0]

 pstring = int(pstring)

 if pstring > 500:

 data = dbg.read_process_memory(pstring,size)

 func_name = dbg.get_ascii_string(data)

 else:

 func_name = "Ordinal entry"

 paddr = dbg.read_process_memory(esp,4)

 addr = struct.unpack("L",paddr)[0]

Reversing and Malware Analysis Training [2012] Page 24

 addr = int(addr)

 dbg.bp_set(addr,handler=addr_handler)

 except:

 pass

 return DBG_CONTINUE

def entryhandler(dbg):

 getaddr = dbg.func_resolve("kernel32.dll","GetProcAddress")

 dict[getaddr] = "kernel32!GetProcAddress"

 dbg.bp_set(getaddr,handler=generic)

 for entry in pe.DIRECTORY_ENTRY_IMPORT:

 DllName = entry.dll

 for imp in entry.imports:

 api = imp.name

 address = dbg.func_resolve(DllName,api)

 if address:

 try:

 Dllname = DllName.split(".")[0]

 dll_func = Dllname + "!" + api

 dict[address] = dll_func

 dbg.bp_set(address,handler=generic)

 except:

 pass

 return DBG_CONTINUE

def main():

 global pe, DllName, func_name,fpp

 global dict

 dict = {}

 file = sys.argv[1]

 fpp = open("calls_log.txt",'a')

 pe = pefile.PE(file)

 dbg = pydbg()

 dbg.load(file)

 entrypoint = pe.OPTIONAL_HEADER.ImageBase +

pe.OPTIONAL_HEADER.AddressOfEntryPoint

 dbg.bp_set(entrypoint,handler=entryhandler)

 dbg.run()

 fpp.close()

if __name__ == '__main__':

 main()

The output will look like,

RETURN ADDRESS: 0x004030e8 CALL: kernel32!GetModuleHandleA

Reversing and Malware Analysis Training [2012] Page 25

RETURN ADDRESS: 0x004030f3 CALL: kernel32!GetCommandLineA

RETURN ADDRESS: 0x00404587 CALL: kernel32!GetModuleHandleA

RETURN ADDRESS: 0x00404594 CALL: kernel32!GetProcAddress

RETURN ADDRESS: 0x004045aa CALL: kernel32!GetProcAddress

RETURN ADDRESS: 0x004045c0 CALL: kernel32!GetProcAddress

So let's apply the logic to some real world reverse engineering scenarios.

Unpacking UPX using API Call Tracing

Below is the log of a UPX packed binary. Look at it closely, can you say which function

contains the OEP?

RETURN ADDRESS: 0x00784b9e CALL: GetProcAddress

RETURN ADDRESS: 0x00784b9e CALL: GetProcAddress

RETURN ADDRESS: 0x00784b9e CALL: GetProcAddress

RETURN ADDRESS: 0x00784b9e CALL: GetProcAddress

RETURN ADDRESS: 0x00784b9e CALL: GetProcAddress

RETURN ADDRESS: 0x00784bc8 CALL: KERNEL32!VirtualProtect

RETURN ADDRESS: 0x00784bdd CALL: KERNEL32!VirtualProtect --> 1

RETURN ADDRESS: 0x0045ac09 CALL: GetSystemTimeAsFileTime --> 2

RETURN ADDRESS: 0x0045ac15 CALL: GetCurrentProcessId

RETURN ADDRESS: 0x0045ac1d CALL: GetCurrentThreadId

RETURN ADDRESS: 0x0045ac25 CALL: GetTickCount

RETURN ADDRESS: 0x0045ac31 CALL: QueryPerformanceCounter

RETURN ADDRESS: 0x0044e99f CALL: GetStartupInfoA

RETURN ADDRESS: 0x0044fd9c CALL: HeapCreate

Here API at location 1 has 'Return Address' 0x00784bdd and API at location 2 has 'Return

Address' 0x0045ac09. The difference between the addresses of both calls is huge which is an

indication that the address 0x0045ac09 is in the function that contains OEP (original entry

point).

This can be proved in the Ollydbg as shown in the below snapshot.

Most of the malwares these days have their own custom packers and I found this technique

extremely useful in unpacking them.

http://securityxploded.com/images/articles/api-call-tracing-unpacking-big.jpg

Reversing and Malware Analysis Training [2012] Page 26

Binary Behaviour Profiling

Look at the sample API Trace logs closely, Can you tell about the behaviour of this binary?

RETURN ADDRESS: 0x004012ce CALL: msvcrt!fopen --> 1

RETURN ADDRESS: 0x00401311 CALL: msvcrt!fseek

RETURN ADDRESS: 0x0040131c CALL: msvcrt!ftell

RETURN ADDRESS: 0x0040133a CALL: msvcrt!fseek

RETURN ADDRESS: 0x00401346 CALL: msvcrt!malloc --> 2

RETURN ADDRESS: 0x00401387 CALL: msvcrt!fread --> 3

RETURN ADDRESS: 0x00401392 CALL: msvcrt!fclose

RETURN ADDRESS: 0x004013b4 CALL: KERNEL32!OpenProcess --> 4

RETURN ADDRESS: 0x004013ee CALL: KERNEL32!VirtualAllocEx --> 5

RETURN ADDRESS: 0x00401425 CALL: KERNEL32!WriteProcessMemory --> 6

RETURN ADDRESS: 0x0040146b CALL: KERNEL32!CreateRemoteThread --> 7

This is a clear indication of this binary reading a file and injecting code into another process.

Finding Interesting Functions

Here's the API Trace log of another binary,

RETURN ADDRESS: 0x00443c29 CALL: inet_ntoa --> point 1

RETURN ADDRESS: 0x0044a6ee CALL: KERNEL32!HeapAlloc

RETURN ADDRESS: 0x00446866 CALL: KERNEL32!GetLocalTime

RETURN ADDRESS: 0x0044a6ee CALL: KERNEL32!HeapAlloc

RETURN ADDRESS: 0x00443f79 CALL: socket --> point 2

RETURN ADDRESS: 0x00443fb5 CALL: setsockop

RETURN ADDRESS: 0x00443fd0 CALL: setsockopt

RETURN ADDRESS: 0x00444045 CALL: ntohl

RETURN ADDRESS: 0x0044404f CALL: ntohs

RETURN ADDRESS: 0x00444063 CALL: bind --> point 3

RETURN ADDRESS: 0x0044412c CALL: ntohl

RETURN ADDRESS: 0x0044413c CALL: ntohs

RETURN ADDRESS: 0x0043adf6 CALL: WSAAsyncSelect

RETURN ADDRESS: 0x0044416b CALL: connect --> point 4

RETURN ADDRESS: 0x00444176 CALL: WSAGetLastError

RETURN ADDRESS: 0x00441979 CALL: USER32!DispatchMessageA

RETURN ADDRESS: 0x00444ce0 CALL: KERNEL32!GetTickCount

RETURN ADDRESS: 0x00444cfa CALL: KERNEL32!QueryPerformanceCounter

RETURN ADDRESS: 0x00444499 CALL: recv --> point 5

RETURN ADDRESS: 0x0044a8c6 CALL: KERNEL32!HeapFre

RETURN ADDRESS: 0x0043adf6 CALL: WSAAsyncSelect

RETURN ADDRESS: 0x004441f7 CALL: closesocket

RETURN ADDRESS: 0x0044a8c6 CALL: KERNEL32!HeapFree

Reversing and Malware Analysis Training [2012] Page 27

Marked points here reflects interesting functions used by this binary revealing network

activity.

Extending API Tracing with IDAPython

We can further use these Addresses from 'API Trace Log file' in IDA to identify functions
and cross references.

Below is the simple IDAPython script that will read the above script log file and colour the
calls in IDA database.

'''

Author: Amit Malik

http://www.securityxploded.com

'''

from idaapi import *

from idc import *

import sys

class logparse():

 def __init__(self,file_path):

 self.file_path = file_path

 self.fp = open(self.file_path,'r')

 self.data = self.fp.readlines()

 def parser(self):

 dict = {}

 for line in self.data:

 line_slice = line.split()

 address = line_slice[2]

 name = line_slice[4]

 dict[address] = name

 for ea in dict.keys():

 print dict[ea]

 ea_c = PrevHead(ea)

 SetColor(ea_c,CIC_ITEM,0x8CE6F0)

 return

def main():

 file_path = AskFile(0,"*.*","Enter file name: ")

 logobj = logparse(file_path)

 logobj.parser()

 return

if __name__ == '__main__':

 main()

Reversing and Malware Analysis Training [2012] Page 28

Conclusion

In this article, you have learnt how to do 'API Call Tracing' using PyDbg/IDAPython scripts
and perform useful tasks such as Unpacking, Binary Profiling, Discovering Interesting
functions etc.

There are lot more useful applications of API Tracing and this article just serve as startup
guide.

References

1. Pydbg - http://code.google.com/p/paimei/

2. OllyDbg - http://www.ollydbg.de/

3. Windbg - http://msdn.microsoft.com/windbg

4. IDAPython - http://code.google.com/p/idapython/
5. Reference Guide - Reversing & Malware Analysis Training

http://code.google.com/p/paimei/
http://www.ollydbg.de/
http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://code.google.com/p/idapython/
http://securityxploded.com/malware-analysis-training-reference.php

Reversing and Malware Analysis Training [2012] Page 29

Manual Unpacking of UPX using OllyDbg
Author: Nagareshwar Talekar

Introduction

In this tutorial, you will learn how to unpack any UPX packed Executable file using OllyDbg

UPX is a free, portable, executable packer for several different executable formats. It
achieves an excellent compression ratio and offers very fast decompression.

Here we will do live debugging using OllyDbg to fully unpack and produce the original
executable FILE from the packed file.

Packing EXE using UPX

To start with, we need to pack sample EXE file with UPX. First you need to download latest
UPX packer from UPX website and then use the following command to pack your sample

EXE file.

upx -9 c:\sample.exe

If you already have UPX packed binary file then proceed further. In such case make sure to
use PEiD or 'RDG Packer Detector' to confirm if it is packed with UPX as shown in the
screenshot below.

http://upx.sourceforge.net/
http://upx.sourceforge.net/
http://www.rdgsoft.8k.com/

Reversing and Malware Analysis Training [2012] Page 30

UPX Unpacking Process

Before we begin with unpacking exercise, lets try to understand the working of UPX.

When you pack any Executable with UPX, all existing sections (text, data, rsrc etc) are

compressed. Each of these sections are named as UPX0, UPX1 etc. Then it adds new code

section at the end of file which will actually decompress all the packed sections at execution
time.

Here is what happens during the execution of UPX packed EXE file.

 Execution starts from new OEP (from newly added code section at the end of file)

 First it saves the current Register Status using PUSHAD instruction

 All the Packed Sections are Unpacked in memory

 Resolve the import table of original executable file.

 Restore the original Register Status using POPAD instruction

 Finally Jumps to Original Entry point to begin the actual execution

Manual Unpacking of UPX

Here are the standard steps involved in any Unpacking operation

 Debug the EXE to find the real OEP (Original Entry Point)

 At OEP, Dump the fully Unpacked Program to Disk

 Fix the Import Table

Based on type and complexity of Packer, unpacking operation may vary in terms of time and
difficulty.

UPX is the basic Packer and serves as great example for anyone who wants to learn
Unpacking.

Here we will use OllyDbg to debug & unpack the UPX packed EXE file. Although you can

use any debugger, OllyDbg is one of the best ring 3 debugger for Reverse Engineering with
its useful plugins.

Here is the screenshot of OllyDbg in action

Reversing and Malware Analysis Training [2012] Page 31

Lets start the unpacking operation

 Load the UPX packed EXE file into the OllyDbg

 Start tracing the EXE, until you encounter a PUSHAD instruction. Usually this is the

first instruction or it will be present after first few instructions based on the UPX

version.

 When you reach PUSHAD instruction, put the Hardware Breakpoint (type 'hr esp-

4' at command bar) so as to stop at POPAD instruction. This will help us to stop the

execution when the POPAD instruction is executed later on.

 Other way is to manually search for POPAD (Opcode 61) instruction and then set

Breakpoint on it.

 Once you set up the breakpoint, continue the execution (press F9).

 Shortly, it will break on the instruction which is immediately after POPAD or on

POPAD instruction based on the method you have chosen.

 Now start step by step tracing with F7 and soon you will encounter a JMP

instruction which will take us to actual OEP in the original program.

 When you reach OEP, dump the whole program using OllyDmp plugin (use default

settings). It will automatically fix all the Import table as well.

 That is it, you have just unpacked UPX !!!

Fixing Import Table

In the current example, OllyDmp plugin will take care of fixing the Import table.

However for most of the packers, we need to use advanced tool called ImpRec (Import

Reconstructor). ImpREC is highly advanced tool used for fixing the import table. It provides
multiple methods to trace the API functions as well as allow writing custom plugins.

Reversing and Malware Analysis Training [2012] Page 32

For interested users, here are simple instructions on how to fix Import Table using ImpRec.

 When you are at the OEP of the program, just dump the memory image of binary file

using Ollydmp WITHOUTasking it to fix the Import table.

 Now launch the ImpREC tool and select the process that you are currently

debugging.

 Then in the ImpREC, enter the actual OEP (enter only RVA, not a complete address).

 Next click on 'IAT Autosearch' button to automatically search for Import table.

 Now click on 'Get Imports' to retrieve all the imported functions. You will see all the

import functions listed under their respective DLL names.

 If you find any import function which is invalid (marked as VALID: NO) then

remove it by by right clicking on it and then from the popup menu, click on 'Delete

Thunks'.

 Once all the import functions are identified, click on "Fix Dump" button in ImpREC

and then select the previously dumped file from OllyDbg.

 Now run the final fixed executable to see if everything is alright.

For advanced packers, you may have to use different methods in ImpRec and some times
need to write your own custom plugin to resolve the import table functions.

For more interesting details refer to our PESpin ImpRec plugin.

http://securityxploded.com/pespinplugin.php

Reversing and Malware Analysis Training [2012] Page 33

Video Demonstration

http://vimeo.com/42197903

This video demonstration uses slightly different way to put a hardware breakpoint than
described in the article. Also it uses ImpREC to fix import table which is useful while

unpacking advanced packers.

 Load your EXE in Ollydbg

 Step Over (Shortcut-F8) PUSHAD instruction

 Next Go to ESP (right click and follow in DUMP Window)

 Put Hardware Read Breakpoint (Access) on first dword at ESP. (This is similar 'hr

esp-4 at PUSHAD instruction as described earlier)

 Now Run EXE until we hit breakpoint (shortcut-F9)

 It will break right after POPAD instruction.

 You will see a JMP instruction few lines below the current instructions. Put

breakpoint on JMP

 Run exe again until it stops at JMP instruction (shortcut-F9)

 Step Over JMP (Shortcut- F8)

 Now we are at OEP, Here just Dump Process using OllyDump without fixing Import

table.

 Here we will use ImpREC to fix the import table as mentioned in 'Fixing Import

Table' section.

 Finally after fixing import table, run the new unpacked EXE to make sure it is perfect

!

References

1. UPX: Ultimate Packer for Executables.

2. OllyDbg: Popular Ring 3 Debugger.

3. ImpREC: Import Table Reconstruction Tool

4. PESpin Plugin for ImpREC

5. RDG Packer Detector
6. PEid Packer Detector

http://vimeo.com/42197903
http://upx.sourceforge.net/
http://www.ollydbg.de/download.htm
http://securityxploded.net/download/Imprec.zip
http://securityxploded.com/pespinplugin.php
http://www.rdgsoft.8k.com/
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml

Reversing and Malware Analysis Training [2012] Page 34

Malware Memory Forensics
Author: Monnappa

Introduction

Memory Forensics is the analysis of the memory image taken from the running computer.

In this article, we will learn how to use Memory Forensic Toolkits such as Volatility to
analyze the memory artifacts with practical real life forensics scenario.

This article is the part of our free "Reverse Engineering & Malware Analysis Course".
You can visit our training page here and all the presentations of previous sessions here

Why Memory Forensics?

Memory forensics can help in extracting forensics artifacts from a computer's memory like
running process, network connections, loaded modules etc etc. It can also help in
unpacking, rootkit detection and reverse engineering.

Below are the list of steps involved in memory forensics

1. Memory Acquistion - This step involves dumping the memory of the

target machine. on the physical machine you can use tools like

Win32dd/Win64dd, Memoryze, DumpIt, FastDump

on the virtual machine, acquiring the memory image is easy, you can

do it by suspending the VM and grabbing the ".vmem" file.

2. Memory Analysis - once a memory image is acquired, the next step is

analyze the grabbed memory dump for forensic artifacts. tools like

Volatility and Memoryze can be used to analyze the memory

http://securityxploded.com/security-training.php
http://securityxploded.com/security-training.php
http://securityxploded.com/security-presentations.php

Reversing and Malware Analysis Training [2012] Page 35

Volatility - A Quick Overview

Volatility is an advanced memory forensic framework written in python. It can be installed
on multiple operating systems (Windows, Linux, Mac OS X), Installation details of volatility
can be found here.

Volatility Syntax & Usage

* using -h or --help option will display help options and list of a

available plugins

 example: python vol.py –h

* Use -f and --profile to indicate the memory dump you are analyzing

 example: python vol.py -f mem.dmp --profile=WinXPSP3x86

* To know the --profile info use below command:

 example: python vol.py -f mem.dmp imageinfo

Demonstration - Memory Forensics

In order to understand memory forensics and the steps involved. I have created a scenario,

our analysis and flow will be based on the below scenario.

Demo Scenario

Your security device alerts, show malicious http connection to ip address 208.91.197.54 from
a source ip 192.168.1.100 on 8th june 2012 at around 13:30hrs...you are asked to investigate

and do memory forensics on that machine 192.168.1.100

Preparation Steps

To start with, acquire the memory image from 192.168.1.100, using memory acquistion tools.
for the sake of demo, the memory dump file is named as "infected.dmp".

Demonstration - Memory Analysis

Now that we have acquired "infected.dmp", lets start our analysis

Step 1: Start with what you know

We know from the security device alert that the host was making an http connection
to 208.91.197.54. so lets look at the network connections.

http://code.google.com/p/volatility

Reversing and Malware Analysis Training [2012] Page 36

Volatility's connections module, shows connection to the malicious ip made by pid 1748

Step 2: Info about 208.91.197.54

Google search shows this ip 208.91.197.54 to be associated with malware, probably
"SpyEye ", we need to confirm that yet.

Step 3: Who is Pid 1748?

Since the network connection to the ip 208.91.197.54 was made by pid 1748, we need to

determine which process is associated with pid 1748. "psscan" shows pid 1748 belongs to
explorer.exe, also two process created during same time reported by security device (i.e june
8th 2012)

http://securityxploded.com/images/articles/malware-memory-forensics-3-psscan_big.jpg

Reversing and Malware Analysis Training [2012] Page 37

Step 4: Process handles of explorer.exe

Now that we know explorer.exe (which is an operating system process) was making
connections to the malicious ip, there is a possibility that explorer.exe is infected.

Lets looks at the process handles of explorer.exe. The below screenshot shows Explorer.exe

opens a handle to the B6232F3A9F9.exe, indicating explorer.exe might have created that
process, which might also be malicious…Lets focus on explorer.exe for now

Step 5: API Hooks in explorer.exe

APIhooks module show, inline API hooks in explorer.exe and jump to an unknown location

Step 6: Exploring the Hooks

Disassembled hooked function (TranslateMessage), shows a short jump and then a long jump
to malware location

http://securityxploded.com/images/articles/malware-memory-forensics-5-apihooks_big.jpg

Reversing and Malware Analysis Training [2012] Page 38

Step 7: Embedded EXE in explorer.exe

Printing the bytes at the hooked location, show the presence of embedded executable in
explorer.exe

Step 8: Dumping the embedded EXE

VadDump tool dumps the embedded exe from explorer.exe

http://securityxploded.com/images/articles/malware-memory-forensics-6-exploring-hooks_big.jpg

Reversing and Malware Analysis Training [2012] Page 39

Step 9: VirusTotal Submission

Submission to VirusTotal, confirms the dumped executable as component of "SpyEye"

Step 10: Can we get more info?

Strings extracted from the dumped executable, show reference to interesting artifacts
(executable and the registry key), it also shows the path to the suspicious executable

B6232F3A9F9.exe.

http://securityxploded.com/images/articles/malware-memory-forensics-9-virustotal_big.jpg

Reversing and Malware Analysis Training [2012] Page 40

Step 11: Printing the Registry Key

Printing the registry key determined from the above step(step 10) shows that, malware creates
registry key to survive the reboot

Step 12: Finding the Malicious EXE on Infected Machine

Now that we know the path to the suspicious executable , lets find it on the infected machine.
Finding malicious sample from infected host and virustotal submission confirms SpyEye

infection.

http://securityxploded.com/images/articles/malware-memory-forensics-11-registry_big.jpg
http://securityxploded.com/images/articles/malware-memory-forensics-12a-malicious-file_big.jpg

Reversing and Malware Analysis Training [2012] Page 41

Conclusion

Memory forensics is a powerful technique and with a tool like Volatility it is possible to find
and extract the forensic artifacts from the memory which helps in incident response, malware

analysis and reverse engineering.

References

1. Reversing Training Session 6 – Malware Memory Forensics

2. Volatility - An advanced memory forensics framework

3. Volatility - Volatile memory analysis research
4. MoonSols Windows Memory Toolkit

http://nagareshwar.securityxploded.com/2012/06/16/training-session-part-8-%E2%80%93-practical-reversing-iii-memory-forensics/
http://code.google.com/p/volatility/
http://volatility.tumblr.com/
http://www.moonsols.com/windows-memory-toolkit/
http://securityxploded.com/images/articles/malware-memory-forensics-12b-virustotal_big.jpg

Reversing and Malware Analysis Training [2012] Page 42

DLL Injection and Hooking
Author: Amit Malik

Introduction

In this article we will learn about DLL Injection and then using it to perform Inline

Hooking in remote process with practical step by step illustrations.

This is the part of our free "Reverse Engineering & Malware Analysis Course".

You can visit our training page here and all the presentations of previous sessions here

In windows each process has its own virtual address space in which it can load and unload
any DLL at any time. But that loading and unloading of DLL is initiated by the process itself.

Sometimes we may want to load a DLL into a process without the process knowledge.

There are many reasons (legitimate or otherwise) to do it. For example a malware author may

want to hide the malicious activity by loading a DLL into a trusted process or may want to
bypass security devices while on the other hand a person may want to extend the

functionality of the original program. But for both the activities steps are same.

Here we will discuss on various way to Inject our code/DLL into remote process with

practical examples. Then we will extend it to hook specific API function in the target process
to perform our own tasks.

DLL Injection

If I am not mistaken then approximately 45-50% malwares these days use code injection to
carry out the malicious activities. So it is very crucial to understand the concept of DLL
injection for a malware analyst.

http://securityxploded.com/security-training.php
http://securityxploded.com/security-training.php
http://securityxploded.com/security-presentations.php

Reversing and Malware Analysis Training [2012] Page 43

I will demonstrate the technique using assembly programming language. If your development
environment is not ready then i would highly recommend reading my previous article

on "Assembly programming basics – A beginner's guide" to get starting with assembly
programming language.

There are couple of method by which we can inject DLL into a process. The latest versions of

windows enforce session separation so some of the methods may not work on the latest
version of windows like windows 7/8.

Couple of Dll Injection Methods:

1. Window hooks (SetWindowsHookEX)

2. CreateRemoteThread

3. App_Init registry key

4. ZwCreateThread or NtCreateThreadEx ? Global method (works well on all

versions of windows)

5. Via APC (Asynchronous procedure calls)

In this article I will use CreateRemoteThread [Reference 1] method because it is the

simplest approach and explains the overall logic. CreateRemoteThread will not work from

windows vista onwards due to Session Separation/Isolation [Reference 4]. In such case you
can use similar but undocumented function, NtCreateThread [Reference 2]

In fact it is not the problem with the CreateRemoteThread, it is the CsrClientCallServer

method from Ntdll that returns false. If we can patch CsrClientCallServer to return success

then we can inject DLL into a process using CreateRemoteThread itself. You can read more
about it here.

Here I will focus on CreateRemoteThread on windows XP.

DLL Injection using CreateRemoteThread

There are primarily two situations

1. Inject DLL into a running process

2. Create a process and Inject DLL into it.

#2 is more suitable for this article because in later section I will cover hooking as well. While
#1 is just the part of #2.
Below is the line from MSDN about the CreateRemoteThread API.

Creates a thread that runs in the virtual address space of another process.

So it means CreateRemoteThread can create a thread into another process or we can say
that it can execute a function into another process.

Let's look into its syntax.

http://securityxploded.com/assembly-programming-beginners-guide.php
http://www.ivanlef0u.tuxfamily.org/?p=395

Reversing and Malware Analysis Training [2012] Page 44

 HANDLE WINAPI CreateRemoteThread(

 __in HANDLE hProcess, ?--

------ 1

 __in LPSECURITY_ATTRIBUTES lpThreadAttributes,

 __in SIZE_T dwStackSize,

 __in LPTHREAD_START_ROUTINE lpStartAddress, ?---------2

 __in LPVOID lpParameter, ?---

------3

 __in DWORD dwCreationFlags, ?---------

4

 __out LPDWORD lpThreadId

);

Mentioned parameters are critical for our task

#1 – handle to the process in which the thread is to be created.

#2 – A pointer to function or entry point of the thread that is going to be

executed

#3 – parameters to the function

#4 – Creation state of the thread

We all know that kernerl32.dll export LoadLibrary API to load DLL at run time and also
kernel32.dll is loaded by default into every process. So we can pass LoadLibrary address to
#2 and parameter to LoadLibrary in #3. When we pass arguments in this order then

CreateRemoteThread will execute LoadLibrary with its parameter in another process and
hence loads the DLL into external process.

The only problem here is that parameter to LoadLibrary must be in target process. For

example if we use LoadLibrary (#2) with "mydll.dll"(#3) as parameter to Loadlibrary then
the name "mydll.dll" must be in our target process.

Fortunately windows provide API to do that as well. We can write into any process

using WriteProcessMemory and can allocate space into another process using

VirtualAllocEx API. But Before that we need handle to our process, we can get that using
OpenProcess or CreateProcess API.

So our order will be:

1. Use OpenProcess or CreateProcess API to get the handle of our target

process

2. Use VirtualAllocEx to allocate space into our target process

3. Use WriteProcessMemory to write our DLL name into our target process

4. Use CreateRemoteThread to inject our DLL into our target process

Reversing and Malware Analysis Training [2012] Page 45

Above steps are enough to inject our DLL into a process. Although to inject into a system
process we first have to setse_debug privilege to our process (means the process that will

inject DLL into another process) but for simplicity I am ignoring that part.

If you remember "two situations" from the beginning of this part then we need a bit of more

work for #2 i.e Create a process and Inject DLL into it.

We first have to create a process and after that we will use above steps to inject our DLL into
newly created process.

Let's look into CreateProcess syntax:

BOOL WINAPI CreateProcess(

 __in_opt LPCTSTR lpApplicationName,

 __inout_opt LPTSTR lpCommandLine,

 __in_opt LPSECURITY_ATTRIBUTES lpProcessAttributes,

 __in_opt LPSECURITY_ATTRIBUTES lpThreadAttributes,

 __in BOOL bInheritHandles,

 __in DWORD dwCreationFlags, ?-------- 1

 __in_opt LPVOID lpEnvironment,

 __in_opt LPCTSTR lpCurrentDirectory,

 __in LPSTARTUPINFO lpStartupInfo,

 __out LPPROCESS_INFORMATION lpProcessInformation

);

Here dwCreationFlags is the important parameter. If you look into its definition on MSDN
then you will see that it is used to control the creation of a process. We can set it to

"CREATE_SUSPENDED" to create a process into suspended mode.

With CREATE_SUSPENDED flag CreateProcess will create the process and stop the

execution of the main thread at the entry point of the thread. To start the process we can
use ResumeThread API.

So our steps will be

1. Create Process in suspended state

2. Inject DLL into the process using above steps

3. Resume the process

Here is the complete program which mimics above steps

;Author: Amit Malik

;http://www.SecurityXploded.com

;No error checking

.386

.model flat, stdcall

option casemap:none

Reversing and Malware Analysis Training [2012] Page 46

include windows.inc

include msvcrt.inc

include kernel32.inc

includelib kernel32.lib

includelib msvcrt.lib

.data

greet db "enter file name: ",0

sgreet db "%s",0

dreet db "enter DLL name: ",0

dgreet db "%s",0

apiname db "LoadLibraryA",0

dllname db "kernel32.dll",0

.data?

processinfo PROCESS_INFORMATION <>

startupinfo STARTUPINFO <>

fname db 20 dup(?)

dname db 20 dup(?)

dllLen dd ?

mAddr dd ?

vpointer dd ?

lpAddr dd ?

.code

start:

invoke crt_printf,addr greet

invoke crt_scanf,addr sgreet,addr fname

invoke crt_printf,addr dreet

invoke crt_scanf,addr dgreet,addr dname

invoke LoadLibrary, addr dllname

ov mAddr,eax

invoke GetProcAddress,mAddr,addr apiname

mov lpAddr,eax

;create process in suspended state

invoke CreateProcess,addr fname,0,0,0,0,CREATE_SUSPENDED,0,0,addr

startupinfo,addr processinfo

invoke crt_strlen,addr dname

mov dllLen,eax

; Allocate the space into the newly created process

Reversing and Malware Analysis Training [2012] Page 47

invoke

VirtualAllocEx,processinfo.hProcess,NULL,dllLen,MEM_COMMIT,PAGE_EXECUTE_REA

DWRITE

mov vpointer,eax

; Write DLL name into the allocated space

invoke WriteProcessMemory,processinfo.hProcess,vpointer,addr

dname,dllLen,NULL

; Execute the LoadLibrary function using CreateRemoteThread into the

previously created process

invoke

CreateRemoteThread,processinfo.hProcess,NULL,0,lpAddr,vpointer,0,NULL

invoke Sleep,1000d

; Finally resume the process main thread.

invoke ResumeThread,processinfo.hThread

xor eax,eax

invoke ExitProcess,eax

end start

Select console application in WinAsm and assemble the above code. It should create a
process and inject our DLL into it.

For eg: you can create calc.exe process and can inject urlmon.dll into it, by default calc.exe
doesn't load urlmon.dll.

Hooking

Here is definition of Hooking from Wikipedia

In computer programming, the term hooking covers a range of techniques used to alter or

augment the behaviour of an operating system, of applications, or of other software
components by intercepting function calls or messages or events passed between software

components. Code that handles such intercepted function calls, events or messages is called a
"hook"

Hooking is the most powerful technique available in computer software. A person can do
almost everything on a system by applying hooks on the right locations.

As stated in the definition that in hooking we intercept function calls or messages or events.

Because it is taking the advantage of flow of execution so we can apply hooks on multiple
locations from original file to system calls.

Reversing and Malware Analysis Training [2012] Page 48

Primarily Hooks can be divided into two parts

1. User mode hooks

1. IAT (Import Address Table) Hooking

2. Inline Hooking

3. Call Patching in binary etc..

2. Kernel Mode hooks

1. IDT Hooking

2. SSDT Hooking etc..

In this article I will discuss Inline hooking technique which is one of the more effective

hooking techniques.

Inline Hooking

In Inline hooking we overwrite the first 5 byte of the function or API to redirect the flow of

execution to our code. The 5 bytes can be JMP, PUSH RET or CALL instruction.

Visually it can be explained by the following figures

Screenshot 1: Normal Call (Without hooking)

Screenshot 2: Call after hooking

Reversing and Malware Analysis Training [2012] Page 49

As you can see in the above picture that the MessageBox function starting bytes are
overwritten by JMP to MyHandler function. In MyHandler function we do our stuff and then

transfer the control back to original function i.e MessageBox.

Now let's create a DLL that will hook MessageBox API and display our custom message

instead of the real message.

To make a DLL we need following things:

1. MessageBoxA API address i.e pointer

2. Our function or code address i.e pointer

We can get MessageBoxA Api address using GetProcAddress.

Here are the steps:

1. Get MessageBoxA address

2. Get custom code or function address

3. Overwrite bytes at #1 with JMP to #2

4. Modify the parameter of original call

5. Transfer control back to #1

Here is the complete code deomonstrating Inline Hooking MessageBox function

;Author: Amit Malik

;http://www.SecurityXploded.com

;No error checking

.386

.model flat,stdcall

option casemap:none

include windows.inc

include kernel32.inc

include msvcrt.inc

include user32.inc

includelib kernel32.lib

includelib msvcrt.lib

includelib user32.lib

.data

tszMsg db "Hello from Hooking Function",0

userDll db "user32.dll",0

msgapi db "MessageBoxA",0

Reversing and Malware Analysis Training [2012] Page 50

.data?

oByte1 dd ?

oByte2 dd ?

userAddr dd ?

msgAddr dd ?

nOldProt dd ?

.code

LibMain proc hInstDLL:DWORD, reason:DWORD, unused:DWORD

 .if reason == DLL_PROCESS_ATTACH

 invoke LoadLibrary,addr userDll

 mov userAddr,eax

 ; Get MessageBoxA address from user32.dll

 invoke GetProcAddress,userAddr,addr msgapi

 mov msgAddr, eax

 ; Set permission to write at the MessageBoxA address

 invoke VirtualProtect,msgAddr,20d,PAGE_EXECUTE_READWRITE,OFFSET

nOldProt

 ; Store first 8 byte from the MessageBoxA address

 mov eax,msgAddr

 mov ebx, dword ptr DS:[eax]

 mov oByte1,ebx

 mov ebx, dword ptr DS:[eax+4]

 mov oByte2,ebx

 patchlmessagebox:

 ; Write JMP MyHandler (pointer) at MessageBoxA address

 mov byte ptr DS:[eax],0E9h

 ; move MyHandler address into ecx

 mov ecx,MyHandler

 add eax,5

 sub ecx,eax

 sub eax,4

 mov dword ptr ds:[eax],ecx

 .elseif reason == DLL_PROCESS_DETACH

 .elseif reason == DLL_THREAD_ATTACH

 .elseif reason == DLL_THREAD_DETACH

 .endif

 ret

LibMain endp

Reversing and Malware Analysis Training [2012] Page 51

MyHandler proc

 pusha

 xor eax,eax

 mov eax,msgAddr

 ; change the lpText parameter to MessageBoxA with our text

 mov dword ptr ss:[esp+028h],offset tszMsg

 ; Restore the bytes at MessageBoxA address

 mov ebx,oByte1

 mov dword ptr ds:[eax],ebx

 mov ebx,oByte2

 mov dword ptr ds:[eax+4],ebx

 ; Restore all registers

 popa

 ;jump to MessageBoxA address (Transfer control back to MessageBoxA)

 jmp msgAddr

MyHandler endp

end LibMain

Select standard DLL under "New Project" tab in WinAsm and paste the above code into the

editor area and assemble it.

Now we have our DLL that will hook MessageBoxA and change the lpText parameter to our

message.

We will inject this DLL into a "Hello world" program that I shown in my previous

article "Assembly Programming – A beginner's guide" with the help of our DLL inject
program.

The output is shown in the below picture:

http://securityxploded.com/assembly-programming-beginners-guide.php

Reversing and Malware Analysis Training [2012] Page 52

Conclusion

Both DLL injection and Hooking are powerful techniques and popularly used by malicious
software as well as legitimate software from the years.

But as the saying goes if you have nuclear power then it is entirely depends on you whether
you make a nuclear missile or use that power for solving problems.

References

1. Three ways to inject code into another process

2. Remote Thread Execution in System Process using NtCreateThreadEx for Vista &

Windows7

3. MSR Detour Project - Hook SDK
4. Impact of Session 0 Isolation on Injection

http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces
http://securityxploded.com/ntcreatethreadex.php
http://securityxploded.com/ntcreatethreadex.php
http://research.microsoft.com/en-us/projects/detours/
http://msdn.microsoft.com/en-us/windows/hardware/gg463353.aspx

Reversing and Malware Analysis Training [2012] Page 53

In-Memory Execution of an Executable
Author: Amit Malik

Introduction

This article is the part of our free "Reverse Engineering & Malware Analysis Course".

You can visit our training page here and all the presentations of previous sessions here

In this article, we will learn how to perform in-memory or file-less execution of executable

with practical code example.

Here I will explain about some of the fancy techniques used by exploits and malwares from

shellcode perspective. This article requires a strong understanding of PE file format. If you

are not comfortable with PE file format then first visit our first training session on PE

Format Basics.

Technical Introduction

Technically an exploit is the combination of two things

1. Vulnerability – the software security bug

2. Shellcode – the actual malicious payload

http://securityxploded.com/security-training.php
http://securityxploded.com/security-training.php
http://securityxploded.com/security-presentations.php

Reversing and Malware Analysis Training [2012] Page 54

Vulnerability gives us control over execution flow while shellcode is the actual payload that
carries out the malicious activity. Without the shellcode vulnerability is just a simple software

bug.

Further we can divide shellcodes into two parts:

1. Normal shellcodes
2. Staged shellcodes (often times termed as drive by download)

In a normal shellcode, shellcode itself carry out the malicious activity for eg: bind shell,

reverse shell shellcodes etc. They do not require any other payload to be downloaded for the ir
working. On the other hand staged shellcodesrequire another payload for their working and
are often divided into two stages.

Stage 1 – that will download stage 2.
Stage 2 – It is the actual malicious payload

Stage 1 downloads the stage 2 payload and executes it. After that stage 2 will perform all

kind of malicious activity. Here the interesting part is how stage 1 executes stage 2 payloads.
In this article I will discuss about it in detail.

The two possibilities for the stage 1 shellcode to execute stage 2 shellcode could be,

1. Download the payload, save it on the disk and create a new process
2. Download the payload and execute it directly from the memory

#1 will increase the footprints and moreover there is greater chances of detection by the host

based security softwares like antivirus.

However in #2, as the payload is executed directly from the memory so it can bypass host

based security softwares very easily. But unfortunately no windows API provides mechanism

to execute file directly from memory. All windows API like CreateProcess, WinExec,

ShellExcute etc. requires file to be locally present.

So the question is how we can do that if there is no such API?

In-Memory Execution

I think in this regard the first known work on In-memory execution was done by ZomBie of

29A labs and then the Nologin also published its own version of the same. Later on Stephen
Fewer from harmony security applied the logic on the DLL and coined a new term reflective

DLL injection which is the integral part of Metasploit framework.

Interestingly it is possible because the structure of a PE file is exactly the same on disk as

in mapped memory. So we can easily calculate the offsets or addresses in memory if we

Reversing and Malware Analysis Training [2012] Page 55

know the offset on disk and vice-versa. It makes it possible to mimic the actual operating
system loader that loads the executable in memory.

Operating system loader is responsible for process initialization, so if we can make a

prototype of it then we can also create a process probably directly from the memory. But

before that, we need to take a look into the OS loaderworking especially how it map
executable in memory.

Following are the simplified steps that carried out by OS loader when you launch
Executables.

1. Read first page of the file which includes DOS header, PE header, section headers etc.

2. Fetch Image Base address from PE header and determine if that address is available

else allocate another area. (Case of relocation)

3. Map the sections into the allocated area

4. Read information from import table and load the DLLs

5. Resolve the function addresses and create Import Address Table (IAT).

6. Create initial heap and stack using values from PE header.
7. Create main thread and start the process.

If we can create a programme that can mimic some of the above steps then we can execute
exe directly from memory.

For example, consider a situation: you download an exe/dll from internet so until you save it

on the disk it will remain in the volatile memory. This means we can read the header

information of that file directly from memory and based on the above steps we can execute

that file directly from memory, in short it is possible to execute an exe/dll without its file
or file-less execution is possible.

If you take a close look on the above steps then we can easily say that most of the
information is stored in the PE header itself, which we can read programmatically.

Technically the minimum information required to run any executable is as follows,

1. Address space

2. Proper sections (exe sections) placement into the address space
3. Imported API addresses

Address space

In PE, everything is relative to Image Base so if we can get Image Base address allocation

then we can proceed to next steps easily else we have to add relocation support to our loader
prototype but for this article, I am ignoring that part and will be assuming that we have an

allocation with Image Base.

Reversing and Malware Analysis Training [2012] Page 56

Sections mapped into Address Space

In PE File header, NumberOfSections field can give us the total number of sections, after
that we can read section’s headers and can write on to the proper address in the memory. (We
read the offset from PointerToRawData and copy that data at VirtualAddress by taking

length from SizeOfRawData field).

Imported API addresses

Again by reading Import Table structure we can get the names of DLLs and APIs used by
the executable. Remember FirstThunk in the import table structure is actually IAT after name

resolution.

Memory Execution – Prototype Code

Based on the above information we can write a basic loader prototype. Please note that I am

ignoring couple of important things in the code intentionally like relocation case, section
permissions, ordinal based entries fixes etc.

/* In memory execution example */

/*

Author: Amit Malik

http://www.securityxploded.com

Compile in Dev C++

*/

#include

#include

#include

#define DEREF_32(name)*(DWORD *)(name)

int main()

{

 char file[20];

 HANDLE handle;

 PVOID vpointer;

 HINSTANCE laddress;

 LPSTR libname;

 DWORD size;

 DWORD EntryAddr;

 int state;

 DWORD byteread;

 PIMAGE_NT_HEADERS nt;

Reversing and Malware Analysis Training [2012] Page 57

 PIMAGE_SECTION_HEADER section;

 DWORD dwValueA;

 DWORD dwValueB;

 DWORD dwValueC;

 DWORD dwValueD;

 printf("Enter file name: ");

 scanf("%s",&file);

 // read the file

 printf("Reading file..\n");

 handle =

CreateFile(file,GENERIC_READ,0,0,OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,0);

 // get the file size

 size = GetFileSize(handle,NULL);

 // Allocate the space

 vpointer = VirtualAlloc(NULL,size,MEM_COMMIT,PAGE_READWRITE);

 // read file on the allocated space

 state = ReadFile(handle,vpointer,size,&byteread,NULL);

 CloseHandle(handle);

 printf("You can delete the file now!\n");

 system("pause");

 // read NT header of the file

 nt = PIMAGE_NT_HEADERS(PCHAR(vpointer) + PIMAGE_DOS_HEADER(vpointer)-

>e_lfanew);

 handle = GetCurrentProcess();

 // get VA of entry point

 EntryAddr = nt->OptionalHeader.ImageBase + nt-

>OptionalHeader.AddressOfEntryPoint;

 // Allocate the space with Imagebase as a desired address allocation

request

 PVOID memalloc = VirtualAllocEx(

 handle,

 PVOID(nt->OptionalHeader.ImageBase),

 nt->OptionalHeader.SizeOfImage,

 MEM_RESERVE | MEM_COMMIT,

 PAGE_READWRITE

);

 // Write headers on the allocated space

Reversing and Malware Analysis Training [2012] Page 58

 WriteProcessMemory(handle,

 memalloc,

 vpointer,

 nt->OptionalHeader.SizeOfHeaders,

 0

);

 // write sections on the allocated space

 section = IMAGE_FIRST_SECTION(nt);

 for (ULONG i = 0; i < nt->FileHeader.NumberOfSections; i++)

 {

 WriteProcessMemory(

 handle,

 PCHAR(memalloc) + section[i].VirtualAddress,

 PCHAR(vpointer) + section[i].PointerToRawData,

 section[i].SizeOfRawData,

 0

);

 }

 // read import dirctory

 dwValueB = (DWORD) &(nt-

>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]);

 // get the VA

 dwValueC = (DWORD)(nt->OptionalHeader.ImageBase) +

 ((PIMAGE_DATA_DIRECTORY)dwValueB)-

>VirtualAddress;

 while(((PIMAGE_IMPORT_DESCRIPTOR)dwValueC)->Name)

 {

 // get DLL name

 libname = (LPSTR)(nt->OptionalHeader.ImageBase +

 ((PIMAGE_IMPORT_DESCRIPTOR)dwValueC)->Name);

 // Load dll

 laddress = LoadLibrary(libname);

 // get first thunk, it will become our IAT

 dwValueA = nt->OptionalHeader.ImageBase +

 ((PIMAGE_IMPORT_DESCRIPTOR)dwValueC)-

>FirstThunk;

 // resolve function addresses

 while(DEREF_32(dwValueA))

 {

Reversing and Malware Analysis Training [2012] Page 59

 dwValueD = nt->OptionalHeader.ImageBase +

DEREF_32(dwValueA);

 // get function name

 LPSTR Fname = (LPSTR)((PIMAGE_IMPORT_BY_NAME)dwValueD)-

>Name;

 // get function addresses

 DEREF_32(dwValueA) = (DWORD)GetProcAddress(laddress,Fname);

 dwValueA += 4;

 }

 dwValueC += sizeof(IMAGE_IMPORT_DESCRIPTOR);

 }

 // call the entry point :: here we assume that everything is ok.

 ((void(*)(void))EntryAddr)();

}

Compile the above code in Dev C++. For proof of concept, I will execute the MessageBox

code that I had shown in my 'Assembly Basics' article.

Now perform the following steps,

1. Compile the MessageBox code again but before that select project properties in

WinAsm (project->Project Properties->Release) and in Link block add the following

command: /BASE:0x500000

2. Click on ok.

3. Now assemble and link the code you will get EXE with 500000 Image Base which is
good for our POC

Below snapshot shows you the execution directly from memory,

http://securityxploded.com/assembly-programming-beginners-guide.php

Reversing and Malware Analysis Training [2012] Page 60

Conclusion

Recently Kaspersky said that they saw a file less worm, actually these things are not new.
Metasploit has file less Trojan from years in terms of reflective DLL injection.
Many malicious codes and packers use heavily these things. It is also strongly known for

security softwares bypassing.

Overall it is very powerful mechanism and must be known to a malware analyst.

References

1. Nologin - Remote Library Injection

2. Harmony Security - Reflective DLL Injection
3. In Memory Execution – Zombie

http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
http://dsr.segfault.es/stuff/website-mirrors/29A/29A-6.html

